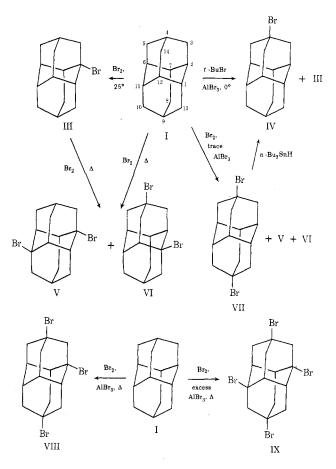
Diamantane. III¹ Preparation and Solvolysis of Diamantyl Bromides

Tamara M. Gund,^{2a,b} P. v. R. Schleyer,*^{2b} Gerald D. Unruh,^{2c} and Gerald J. Gleicher^{2c}

Department of Chemistry, Princeton University, Princeton, New Jersey 08540, and Department of Chemistry, Oregon State University, Corvallis, Oregon 97331

Received October 30, 1973

The bromination of diamantane (I) may be controlled to give mono-, di-, or polybrominated derivatives. At 25° in neat bromine, 1-bromodiamantane (III) is obtained in high yield. In refluxing bromine, 1,6- and 1,4-dibromodiamantane (V and VI) predominate. 4-Bromodiamantane (IV) is best prepared as a 59:41 equilibrium mixture with III, by reaction of I with tert-butyl bromide-aluminum bromide at 0°. Reaction of I in neat bromine with trace amounts of AlBr₃ gives 4,9-dibromodiamantane (VII) as the major product together with dibromides V and VI. Addition of larger quantities of Lewis acid produces 1,4,9-tribromodiamantane (VIII) and 1,4,6,9-tetrabromodiamantane (IX). The structure of the various bromides can be determined from their nmr spectra, as a chemical shift additivity relationship holds. The monobromides and dibromides were solvolyzed in 80% aqueous ethanol. The relative rates at 75° follow: III, 1.0; IV, 3.2×10^{-2} ; V, 2×10^{-3} ; VI, 8×10^{-3} ; VII, 7×10^{-4} . 1-Bromodiamantane (III) solvolyzes eight times faster than 1-bromoadamantane (II), and IV three times slower. Although carbocation strain is less favorable for III and IV than for II, III is accelerated by relief of axial leaving group strain and by the greater stability of the 1-cation owing to β -chain branching. No detectable hydroxy bromide intermediates formed during solvolysis of V and VI. The solvolysis rates of dibromides V, VI, and VII were analyzed in terms of two limiting models for the transmission of nonconjugative substituent effects— σ inductive (through bond) and field models. The field effect contribution was evaluated by calculations based on the Tanford modification of the Kirkwood-Westheimer ellipsoidal model. The magnitude of each transmission mode is independent on the geometrical relationship between the two bromines. Through-bond coupling is favored by the parallel arrangements found in V and VII, and contributes factors in the range of $\frac{1}{2}-\frac{1}{45}$ to the rate depressions observed.


Diamantane (I), first prepared³ in 1965, became readily available in 1970.^{4,5} Initial chemical studies of this second member of the diamondoid family centered on methods of functionalization,⁶⁻¹⁰ substituent interchange,⁷⁻¹⁰ relative reactivity of the two bridgehead positions,⁶ and equilibration studies of substituent preferences for the three different positions.¹¹

Ionic bromination of adamantane proceeds in a relatively uncomplicated manner to give only the bridgehead monosubstituted derivative;¹² no polybrominated compounds are obtained even after prolonged reflux.^{12,13} However. by addition of greater amounts of Lewis acid catalysts and increasing the severity of the reaction conditions, adamantane may be selectively di-, tri-, or tetrabrominated at the bridgehead positions.¹³⁻¹⁶ The reaction is thought to proceed by an ionic pathway with intermediate formation of bridgehead carbocations.^{12,13,17} These adamantane bromides are versatile starting materials for a variety of syntheses leading both to substituted adamantanes and to unusual ring skeletons.^{13-15,18-20} It was expected that diamantane also might be selectively brominated. However, owing to its lower symmetry, two types of bridgehead positions, termed "medial" 21 (C-1, -2, -6, -7, -10, -11) and "apical" (C-4, -9) are available for substitution. We have found that the bromination of diamantane may be controlled to give a variety of mono- and polybromides. The solvolysis rates of these compounds provide insight into relative reactivities of the substituent positions.⁶

Results

Preparation of Diamantyl Bromides. Scheme I summarizes the bromination results and Table I provides greater detail. In neat bromine, after only 2 hr at room temperature, diamantane gives 1-bromodiamantane (III) in 80% yield. Refluxing I in bromine for longer periods results in mixture of the 1,6- and 1,4-dibromides (V and VI). Addition of catalytic amounts of aluminum bromide to a diamantane-bromine solution gives mixtures of 1- and 4-bromodiamantane (III and IV) and 1,6- 1,4- and 4,9-dibromodiamantane (V, VI, and VII). The monobromide/dibromide ratio is determined by the amount of catalyst, the temperature, and the reaction time. It is difficult to control the bro-

Scheme I

mine-aluminum bromide reactions to obtain 4-bromodiamantane but the dibromo derivatives VI and VII are best prepared in this manner. The optimum preparation of 1,6dibromodiamantane (V) utilized refluxing bromine without added AlBr₃ catalyst. By successively increasing the amount of aluminum bromide added to the reaction mixture, 1,4,9-tribromodiamantane (VIII) and 1,4,6,9-tetrabromodiamantane (IX) were obtained selectively as major

antel Dependence in 2007 (m/m) Accessed Telescol

Galastanta Deta Constanta of Adamontal and Di

Table I
Bromination of Diamantane. Effect of Temperature, Catalyst, and Brominating
Agent on Product Distribution

					•								
	Br2,	t-BuBr,	AlBra,	Temp,	Time,				Products, 9	~			Unidentified
I, g	ml	g	g	°C	hr	III	IV	v	VI	VII	VIII	IX	products, %
2.0	10			25	2	80ª		в	b				
10.0	50			Reflux	16	19°		48^{c}	7.70				25 , 3°
1.0	5		0.10	0	5		4^{c}	6°	38°	48 °			ь
2.0	10		0.08	Reflux	2			40^{d}			53^a		ь
2.0	10		2.0	Reflux	1	b	Ь	b	ь	Ь	b	41 ª	b
2.0		2.0	0.1	0	24	40^{e}	58°	ь	b	b			

^a Per cent yield, determined after work-up and purification. ^b Present, but amounts were not determined. ^c Composition of product determined by glc before separation. ^d Mixture was not separated. ^e Composition of product determined by glc analysis of the hydrolyzed mixture.

Table II

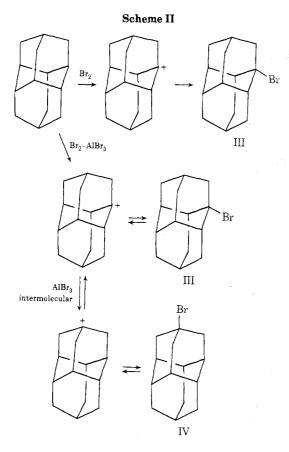
Compd	Temp, °C	k, sec ⁻¹ a	$k_{\rm rel}$ 75°	ΔH^* , kcal/mol	ΔS^* , eu	Ref	Registry No.
1-Bromoadamantane (II)	25.0	$5.1 imes 10^{-7 b}$		22.4	-12.3	d	768-90-1
· · ·	70.0	$8.3 imes10^{-5b}$					
	75.0	1.35 $ imes$ 10 ^{-4 b}					
2-Bromo-2-methyl-							
adamantane (XVII)	75.0	$7.4 imes10^{-1}$				е	27852-61-5
1-Bromo-3-methyl-							
adamantane (XVIII)	75.0	$9.76 imes 10^{-5}$		24.0	-10.1	f	702-77-2
1-Bromodiamantane (III)	25.0	$3.67 imes10^{-6}$ b					30545-17-6
	49.8	7.64 \pm 0.025 $ imes$ 10 $^{-5}$		22.8	6.8	g	
	70.0	$6.62 imes 10^{-4}$ b					
	75.0	$1.09 imes10^{-3}$ b	1				
	75.4	$1.13 \pm 0.025 imes 10^{-3}$					
4-Bromodiamantane (IV)	25.0°	1.05 $ imes$ 10 $^{-b}$					30545-30-3
	70.0	$2.16 imes10^{-5b}$					
	75.0	$3.60 imes10^{-5b}$	$3.2 imes10^{-2}$	23.4	-11.9	g	
	75.3	$3.69 \pm 0.13 imes 10^{-2}$					
	100.8	$4.29 imes10^{-4}$					
	103.0	$4.53 imes10^{-4}$					
1,6-Dibromodiamantane	25.0	$1.13 imes10^{-8}$ b					32401-10-8
(V)	70,0	$2.18 imes10^{-6}$ b					
	75.0	$4.51 imes10^{-6}$ b	$2 imes 10^{-3i}$				
	88.9	$1.97 \pm 0.11 imes 10^{-5}$		24.1	-14.2	g	
	100.2	$4.39 \pm 0.025 \times 10^{-5}$					
	123.5	$3.14 imes10^{-4c}$					
	125.8	$5.42 imes10^{-4}$					
1,4-Dibromodiamantane	25.0	$1.91 imes10^{-8}$ b					32401-09-5
(VI)	70.0	$5.17 imes10^{-6}$ b					
	75.0	$8.82 imes10^{-6}$ b	$8 imes 10^{-3}$	24.7	-11.1	g	
	75.2	$8.98 \pm 0.10 \times 10^{-6}$					
	100.4	$1.08 \pm 0.10 imes 10^{-4 h}$					00051 00 0
4,9-Dibromodiamantane	25.0	$4.41 imes10^{-9}$ b					30651-02-6
(VII)	70.0	$9.11 \times 10^{-7 b}$		00 F	10.1		
	75.0	$1.51 imes10^{-6.b}$	$7 imes 10^{-4}$	23.5	-18.1	g	
	100.20	$1.60 \pm 0.01 imes 10^{-5}$					
	115.50	$5.78 \pm 0.10 imes 10^{-5}$					876-53-9
1,3-Dibromoadamantane	25.0	3.20×10^{-10} b					010-03-9
(\mathbf{X})	70.0	$9.22 imes 10^{-8}$ b					
	75.0	$1.58 imes 10^{-7 b}$		0F 0	10 0		
	100.4	$1.98 \pm 0.05 imes 10^{-6}$		25.0	-18.3	g	
	125.1	$1.70 imes10^{-5}$ °					
	126.0	$1.82 imes10^{-5}$ $^{\circ}$					

^a Determined conductometrically unless otherwise noted. Average of duplicate determinations. ^b Calculated from other temperatures. ^c Determined titrimetrically. ^d Reference 28c. ^e Rate constant determined by Dr. J. L. Fry. ^f Reference 37. ^g This work. ^h Average of three runs. ⁱ Statistically corrected.

reaction products. All the bromo and polybromo derivatives are readily separable by column chromatography on alumina.

Alternatively, bromination can be achieved by reaction of diamantane with a slight excess of tert-butyl bromide and catalytic amounts of aluminum bromide. After 24 hr at 0°, a mixture of monobromides (40% III, and 58% IV) and trace amounts of dibromides V, VI, and VII were obtained. 4-Bromodiamantane (IV) was also prepared by selective reduction of 4,9-dibromodiamantane (VII) with 1 mol of trin-butyltin hydride,⁶ but this is less convenient than the preparation of the III-IV mixture from tert-butyl bromide-aluminum bromide isomerization, and separation of the two components either directly or after conversion to alcohols by column chromatography on alumina.

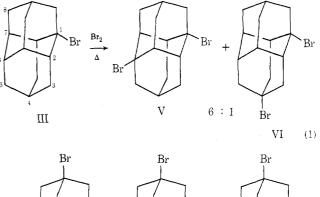
Solvolysis Reactions. Solvolysis rate constants for III, IV, V, VI, VII, and 1,3-dibromoadamantane (X) were measured in 80% ethanol either conductometrically or titrimetrically (Table II). Product studies to detect the presence of monobromo intermediates were undertaken for dibromides V and VI. In both cases, solvolyses were carried out in 60% acetone for half of one half-life. The products were analyzed by gas chromatography but no evidence for the build-up of intermediates was found.

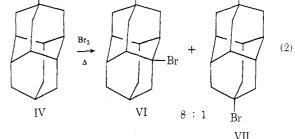

Discussion

Preparation of Monobromides. Diamantane (I) is more reactive toward bromination than adamantane, since I reacts rapidly at room temperature. Furthermore, the medial bridgehead (C-1) is substituted more readily than the apical (C-4); in the absence of Lewis acid catalyst the 4monobromo derivative is not formed in significant amounts. This is quite understandable when one considers the 3:1 statistical advantage for medial over apical attack and the inherently greater stability of the medial over the apical cation.

The 24-fold greater solvolysis rate of 1-bromodiamantane (III) over 4-bromodiamantane (IV) at 25° (Table II) provides documentation for the greater stability of the 1 cation. The solvolysis rate of 1-diamantyl bromide (III) also is eight times faster than that of 1-adamantyl bromide (II), consonant with the greater ease of bromination of diamantane than that of adamantane. Furthermore, diamantane in SbF₅-FSO₃H at -78° gives the 1- and not the 4diamantyl cation, the structure being readily assigned from the proton nmr spectrum.²²

Apical (4) derivatives are expected to be thermodynamically more stable owing to their equatorial character and more favorable enthalpy; however, medial (1) derivatives, while axial, nonetheless have a statistical advantage (greater entropy owing to lower symmetry, $\Delta\Delta S = R \ln 3/1$), but this effect is of lesser magnitude except when the substituents are small. Apical products would thus tend to result from thermodynamic control by equilibration.^{5c}


Addition of trace amounts of $AlBr_3$ to the diamantane bromination produces much 4-substituted product by equilibration of the first formed 1-bromodiamantane (III) (Scheme II). Primary formation of 1-bromodiamantane



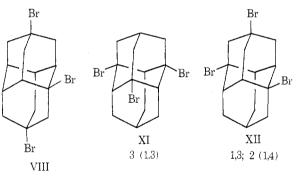
(III) was indicated by following the reaction of I with *tert*butyl bromide-aluminum bromide at 0° for 24 hr. After 1 hr, III predominated, but at the end, the reaction mixture was richer in IV than III (59:41). This ratio is in agreement with that obtained by McKervey by direct equilibration of III and IV.^{5c}

4-Bromodiamantane (point group C_{3v}) has symmetry number 3, which lowers its entropy by R ln 3 or 2.18 cal/ deg mol relative to 1-bromodiamantane (point group C_s , symmetry number 1). This would contribute -0.65 kcal/ mol $(-T\Delta S)$ to the equilibration free energy at 25° .²³ The enthalpy difference between axial and equatorial cyclohexyl halides is rather small $(0.28-0.53 \text{ kcal/mol})^{23}$ and the entropy term is of comparable importance in the III \rightleftharpoons IV equilibration. The entropy term becomes more important at higher temperatures and the formation of the 1 isomer is favored under such conditions.^{5c,11,24}

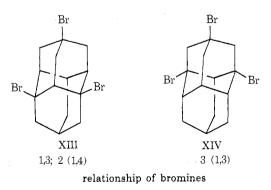
Preparation of Dibromides. Formation of the dibromo derivatives is governed not only by the relative reactivity of the apical and medial positions but also by the position of attachment and the inductive effect of the bromine already present in the precursor monobromide. For 1-bromodiamantane (III) further uncatalyzed bromination occurs at C-4 and C-6 (ratio VI:V 1:6) since both are four carbon atoms away (eq 1). The greater amount of C-6 attack is due to the greater reactivity at the medial position. We expected 4-bromodiamantane (IV) to react preferentially at C-9, since it is the only available bridgehead six carbons removed. In fact, uncatalyzed bromination of IV gave a mixture of 1,4-dibromide (VI) and 4,9-dibromide (VII) in an 8:1 ratio (eq 2) instead of the statistical 3:1. Here the me

dial position was again preferentially attacked despite its smaller separation from the 4-bromine originally present. This suggests the possibility of the operation of a specific ("through-bond")²⁵ net effect enhancing the inductive interaction between the 4 and 9 positions (see below).

In the presence of aluminum bromide, equilibration of the initially formed monobromides or product dibromides may occur. This is shown most directly by the obtention of VII as one of the products from III (eq 3).

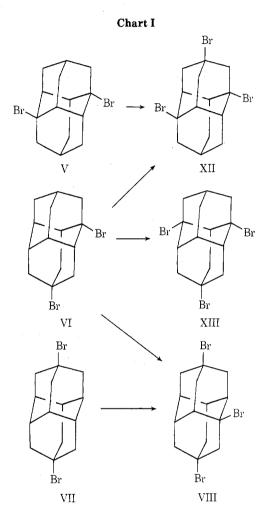

1,6-Dibromodiamantane (V) when treated with traces of aluminum bromide in bromine gives a mixture of V, VI, and VII, but it is not clear that complete equilibration was obtained under the conditions employed.

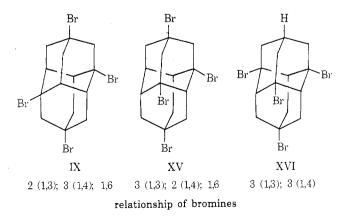
Preparation of Polybromides. By increasing the severity of the bromination conditions, a tribromide (VIII) and



tetrabromide (IX) were obtained from diamantane (I). Assignment of structures was made by nmr analysis (discussed below) and by synthesis from dibromides.

Excluding unlikely vicinal dibromides, five bridgehead tribromides, VIII and XI-XIV, are possible. Tribromides

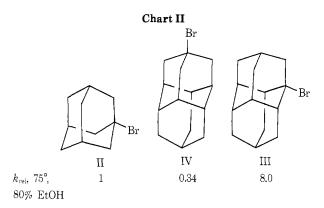

1,3; 1,4; 1.6


XI and XIV are less likely candidates however, owing to the three 1,3 bromide-bromine relationships. No vicinal or 1,3-type dibromodiamantanes have ever been observed as bromination or even as rearrangement products, suggesting that substitution is strongly inhibited at positions close to bromines already present.

Of the remaining three isomers (VIII, XII, and XIII), VIII seemed most likely since two of the bromines have a 1,6 relationship. Furthermore, the observed nmr spectrum was in closest agreement to that calculated for VIII. Isomer Gund, Schleyer, Unruh, and Gleicher

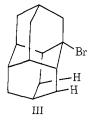
VIII could result directly from bromination of VI and VII; XII can be produced from V and VI but XIII only from VI (Chart I). Bromination of VII in the presence of aluminum bromide gave a product identical by nmr, ir, and melting point with the tribromide VIII isolated by direct polybromination of I (Chart I). Gas chromatographic analysis of the progress of the reaction revealed that equilibration of VII prior to reaction with bromine did not occur. Moreover, bromination of V under similar conditions produced after 16 hr only an equilibrium mixture of V, VI, and VII with only a small amount of tribromide.

The tetrabromide isolated by addition of large quantities of aluminum bromide to bromination of I seemed likely to have one of the structures IX, XV, or XVI.



The observed nmr spectrum was in closest agreement to that calculated for IX (see below). Furthermore, IX was Preparation and Solvolysis of Diamantyl Bromides

produced by bromination of VII with larger quantities of aluminum bromide. Equilibration of VII prior to reaction with bromine and equilibration of tetrabromide after reaction were excluded by careful glc monitoring of reaction progress.


Solvolysis of Monobromo Derivatives. Since elimination and back-side solvent attack do not occur, diamantane derivatives, like their adamantane analogs,^{15,28} undergo mechanistically uncomplicated solvolysis. It might be expected that the apical 4-bromodiamantane (IV) would be about as reactive as 1-bromoadamantane (II) and the medial isomer (III) two to three times faster owing to relief of 1,3-diaxial $Br \cdots H$ interactions destabilizing the starting material.^{5c,23,29}

In actual fact, the diamantyl bromides exhibit a 24-fold rate difference between the bridgehad positions, favoring the "medial" isomer. Apical 4-bromodiamantane (IV) solvolyzes three times slower and the medial isomer (III) eight times faster than 1-bromoadamantane (II) (Chart II).

Molecular mechanics calculations^{30–32} were carried out to assess the steric contributions to these rate differences (Table V).³³ The method utilizes the hydrocarbon as a model for the ground-state strain, and the free carbocation as a model for strain in the transition state.^{33–36} This approach has been applied successfully to other bridgehead systems whose solvolysis rates vary nearly 20 powers of ten; the average deviation is only a factor of $3.^{33-36}$

From these calculations, the effect of strain on solvolysis was expected to be a small rate deceleration for both 1- and 4-bromodiamantane (ca. 0.5 and 0.4) compared to 1-bromoadamantane³³ (Table V). Diamantane is more rigid than adamantane, and resistance toward flattening of the bridgehead cations is greater. Agreement of calculations and experiment for the apical isomer (IV) is excellent, but the higher reactivity of III is not explained.

These calculations neglect the greater steric requirement of bromine compared to hydrogen. Winstein²⁹ has invoked ground-state steric strain relief to explain the three- to fourfold solvolysis rate difference between *cis*- and *trans*-4-*tert*-butylcyclohexane *p*-toluenesulfonate; despite mechanistic differences, these appear to be reasonable models for axial and equatorial substrates. This effect may be neglected for 1-bromoadamantane (II) with 4-bromodi-

Table VCalculated Steric Energies of Adamantane andDiamantane and Their Bridgehead Carbocations^{a,b}

	Hydrocarbon	Cation	Δ strain	k _{rel} (calcd) ^c	k _{rel} (obsd)
Adamantane Diamantane	8.91 13.50	21.18 26.93 (apical)	$\begin{array}{c} 12.27\\ 13.43 \end{array}$	$\begin{array}{c}1\\0.4\end{array}$	$\begin{array}{c} 1 \\ 0.3 \end{array}$
		26.51 (medial)	13.01	0.5	8.0

^a In kilocalories per mole. Reference 33. ^b Calculations with a revised force field. Cf. J. L. Fry, E. M. Engler, and P. v. R. Schleyer, J. Amer. Chem. Soc., **94**, 4628 (1972); and E. M. Engler, J. D. Andose, and P. v. R. Schleyer, *ibid.*, **95**, 8005 (1973), give comparable results. ^c Calculated from the linear free energy relationship $-\log k$ bromide (80% EtOH, 70°) = 0.41 Δ strain - 0.12; cf. ref 35.

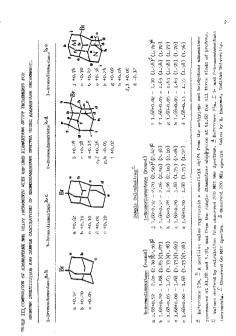
 Table VI

 Contributions to Solvolysis of Monobromides

	1-Adamantyl (II)	4-Diamantyl (IV)	1-Diamantyl (III)
Δ strain effect relative			
rates	1	0.4	0.5
Relief of leaving			
group strain factor	1	1	2.8^{b}
β -Ålkyl branching			
factor	1	1	5.7°
Total k_{rel} (calcd) ^d	1	0.4	8.0
Experimental $k_{\rm rel}$ (25°) 1	0.34	8.0

^{*a*} Molecular mechanics calculations (Table V). ^{*b*} Corresponds to an enthalpy difference of 0.6 kcal/mol for IV and III.^{50 o} Based on acyclic models; see ref 37 and text. ^{*d*} Product of the three factors.

amantane (IV), since in both cases the bromines are equatorial with respect to all composite cyclohexane rings. However, for 1-bromodiamantane (III) the bromine is axial with respect to one cyclohexane ring. Consequently, the diamantane is inaccurate as a model for the ground state. The effect of the diaxial interactions may be estimated from the enthalpy difference between 1- and 4-bromodiamantane, 0.6 kcal/mol^{5c,11b} (slightly larger than the axial strain in the more flexible bromocyclohexane, 0.5 kcal/mol).²³


This ground-state steric effect, not taken into account in the calculations of Table V, should result in a ~2.8-fold rate enhancement for medial bromide (III) if the strain is completely relieved in the transition state. On this basis, III should be 1.4 times more reactive than 1-adamantyl bromide (II), still less than the experimental eightfold effect. We attribute the remaining difference, a factor of 5.7 (8/1.4), to electronic effects (inductive and hyperconjugative) due to differences in chain branching, particularly on two at the β carbons.

The magnitude of this effect is in agreement with that observed experimentally in acyclic compounds. Streitwieser has shown that the 80% ethanolyses of tertiary halides correlate with $\Sigma \sigma^*_{CH_2}$ of the substituents with $\rho^* =$ -3.29.³⁷ Assuming that the difference between III and IV is equivalent to substitution by two ethyl groups ($\Sigma \sigma^*_{CH_2} =$ 0.230), a rate enhancement of 5.7 is calculated. Table VI summarizes our rate analysis. That β branching is capable of preferentially stabilizing diamondoid carbocations is shown by the obtention in superacid media of only the 1diamantyl cation from diamantane²² or either 1- and 4-bromodiamantane;³⁸ triamantane (XVII)³⁹ similarly gives the 2-triamantyl cation. In both cases, the most highly β branched cation is formed (eq 4-6).

Ner Spectra of Discarty1 Browides. Adamantane certratives have been shown to obmy additivity relationships which make their nam spectra readily interpretable. 20, 27 From 1- and 2-substituted adapantanes, sets of substituent shielding and deshielding parameters have been derived which can be used to accurately predict the spectra of di and polysubstituted adapantanes (Table III). We have found that these shift parameters may also be used to predict dispartance spactra to a first approximation. As illustrated in Table III, the method simply equates the 1-yosition (apical) of diamaniane with an adamantane bridgebead, but the diamantane 1-position (medial) is treated as a bridgehead with respect to one elementary with (M)and as a secondary position with respect to the other adamantane molety, N. Although this approximate procedure is useful for structure elucidation of di - and even polysubstituted diamantanes, better agreement between calculated and observed spectra may be obtained by using a refined set of shift parameters derived from the 200 MHz mur spectra of 1- and 1-bromodianantane (Table III). As illustrated in Table IV, superior agreement is found for di and polysubstituted diamantyl brouides using these refined parameters, and isomerare readily differentiated.

In general, L. (apical) diamentarie derivatives give simpler pur spectra than 2- (medial) isomers and therefore are easier to interpret. -Bronodiamantane (IV) behaves like 1-adapanty1 bromide, with deshielding effects caused by the browine substituent generally decreasing with increasing distance. However, the remote C-9 bridgehead hydrogen is deshielded more than the adjacent secondary hydrogens at 3-8. The 1-bromodiarantane (III) displays a more complicated spectrum, however, interpretation is facilitated by characteristic AB quartets (at 5 2.35 and 1.56, $J \cong 12$ Hz, C_3 and C_{14} nethylene H's) due to 1,3-diaxial and 1,3-axial-equatorial interactions between the axial browing and corresponding protons.

3

Gund, Schleyer, Unruh, and Gleicher

Of the three dibromides, dispical VII gave the simplest spectrum consisting of two times at 60 MHz in a 1916 downfield wertwid watto. Dimedial-1, 6-dipromide (V) displayed AB quartets at 5 2,50 and 1.69, while medial-apical, 1,1-dibroxide (VI) displayed AB patterns furthe downfield (8 3.00 and 1.91) then those of V. Of the three most probable tribromide structures, VIII, XII, and XIII, the observed 250 MHz nar spectrum was most consistent with that calculated for VIII. Pribromide XII would be expected to exhibit two downfield (6 3.00 and 0.01) and two upfield (5 2.20 and 1.59) AB payterns, while only one AB pattern (8 3.00 and 1.91) is actually observed. Similarly tribrowide XIII should have three AB protons absorbing at about 6 3.02 and near 5 2.20, while only two protons artually appear at 5 3.02. Also, the proton singlet at 5 1.90 is in better agreement with structure VIII (calc. 2.06-2.21), than XII (calc. 2.11-2.15); XIII is not expected to display such an unfield absorption.

Similar arguments lead to the assignment of structure IX to the natira'n root de

Experimental Section

Microscalyses were performed at Moffmann-is Booke, Nutley, N.C., and Robertson Laboratories, Florham Park, K.J. Infrarod spectra (Iable IX) wore taken on a Parkin Elmer 257-5 stantrophotometer. Nor stants were recorded on Varian A-60-A or MA-100 spectrometers. Chamizel shifts are recorded in 8 units (parts per million) relative to tetramethylsilane. Ges chronatographic analysis and separations were performed on either a Varian-Aerograph 90-P or a Ferkin Einer S20 flage ionization gas chronatograph unit.

Preparation of Monobrothies. A. In Heat Browine at Room Temperature. Brotdue (10 ml) was added drouwise to 2.0 x (0.011 mole) of diamentano with stirring and cooling in an ice bath. After addition was comploted, the ice bath was removed and the reaction mixture was stirred about two hours at room perperature. The bromine solution was diluted with CCL, or CHCL, and poured onto ice. Excess browing was decomposed by addition of solid sodium

2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10		्र २, २, २, २ २ २ २ २ २ २ २ २ २ २ २ २ २ २	1-1-1-28 -28-	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ас	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
b 3 1.48 1.85 6.e 3.1 1.68 1.75 a 6 1.65 2.70 a 6 1.65 2.70 a 6 1.65 2.10 a 6 1.65 2.10 a 7 1.06 2.10 a 7 1.66 1.97 a 1.65 1.06 1.97 a 1.75 2.00 2.00 a 1.95 2.00 2.90 b 6 1.93 1.97 a 1.75 2.00 2.90 b 1.13 2.01 2.91 b 2 2.01 2.91 1.97 a 1.13 2.00 2.91 2.95 a 1.13 2.96 1.97 2.95 a 1.103 2.91 2.91 2.95 a 1.103 2.91 2.95 2.		ан 2017 - 2017 - 100 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ci c.	0 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0 X1 1.08 1.16 1 2 1.16 1.16 1 5 1.16 1.16 1 5 2.00 2 1 5 1.16 1.16 1 5 1.16 1.16 1 2 1.16 1.16 1 2 1.16 1.16 1 2 1.16 1.16 1 2 1.16 2.16 1 2 1.16 2.16 1 2 1.16 2.16 1 2 2.16 2.16 1 2 2.16 2.16 1 2 2.16 2.16 1 1 1.10 2.16 1 1 1.10 2.16 1 1 1.10 2.16 1 1 1.10 2.16 1 1 1.10 2.16 1 </td <td></td> <td>्रेस द्वा द्वा द्वा द्वा द्वा द्वा द्वा द्वा द्वा द्वा</td> <td>「 「 日 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td></td> <td>ci c.</td> <td>21 . 21 2</td>		्रेस द्वा द्वा द्वा द्वा द्वा द्वा द्वा द्वा द्वा द्वा	「 「 日 1 1 1 1 1 1 1 1 1 1 1 1 1		ci c.	21 . 21 2
4 6 1.63 1 7 2.20 1 7 2.35 5 1 5 1.06 5 1 5 1.06 5 1 5 1.06 5 1 5 1.06 5 0 1 2 1.06 0 1 5 5 0 1 2 2.05 5 0 2 2 2 2 0 1 1 1 1 2 0 1 2 2 2 2 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1	6, w N N Q *	で、 本 で、 本 に 、 、 、 、 、 、 、 、 、 、 、 、 、	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a a a a a a a a a a a a a a a a a a a	ci c.	
1 2 2.00 2 1 2 2.16 2 1 2 2.16 2 1 2 1.16 1 1 2 1.16 1 1 2 1.16 1 1 2 1.16 1 1 2 2.55 2.90 1 2 2.55 2.90 1 2 2.53 2.90 1 1 2 2.00 1 2 2.00 2.90 1 1 1 2.00 1 2 2 2.00 1 1 1 1.00 1 1 1 1.01 1 1 1 1.01 1 1 1 1.01 1.90 1 1 1 1.91 1.91 1 1 1 1.00 1.91 <t< td=""><td>* 9 5 5 4</td><td>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>1</td></t<>	* 9 5 5 4	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
a b 2.35 5.35 5 a b 2 1.46 5 a 5 1.46 1.45 5 a b 2 1.46 1.45 a b 6 1.45 5 a b 5 1.46 5 a b 6 1.45 5 a b 5 2.50 5.90 a b 5 2.60 5.90 a b 6 1.70 2.50 a b 1.10 2.50 2.90 a a 1.10 2.91 2.91 a a 1.10 2.91 1.91 a a 2.91 2.91 2.91 a a 1.10 2.91 1.91 a a 2.91 2.91 2.91 a a 2.91 2.91 2.91 <		· · · · · · · · · · · · · · · · · · ·	2.28 2.11 2.11 2.12 2.12 2.12 2.12 2.12	0 G G G G G G G G G G G G G G G G G G G	cu c.	21 . 21 . 21
4 5 1.96 1.96 6 1.6 1.66 1.66 6 1.6 1.66 1.66 6 1.6 1.66 1.66 6 1.9 2.16 1.6 6 1.9 2.16 1.6 6 1.9 2.16 2.6 6 2.9 2.6 2.6 6 2.9 2.16 2.6 6 2.9 2.16 2.9 6 2.9 2.16 2.9 6 2.9 2.16 2.9 6 2.10 2.10 2.9 6 1 1.10 2.6 6 1 1.10 2.6 6 1 1.10 2.6 6 1 1.10 2.6 6 1 1.10 2.6 6 1 2.6 2.6 6 1 2.6 2.6 <		ΣΠ α α α α α α α α α α α α α	5.12 5.22 5.23 5.24 5.25	3 3 3 3 3 3 3	cu c.	· · · · · · · · · · · · · · · · · · ·
PAK 3 1.00 1 1 2 1.65 1 6 6 1.55 1 6 2 2.55 1 6 2 2.55 2 6 2 2.55 2 6 2 2.55 2 6 2 2.50 2.40 6 2 2.50 2.40 6 2 2.50 2.40 6 2 2.50 2.40 6 2 2.50 2.40 6 2 2.50 2.40 6 2 2.40 2.40 6 2 2.40 2.40 6 1 1 1.40 1.70 6 1 1 1.40 2.40 6 1 1 1.40 1.70 6 1 1 1.56 1.76 6 1 1		1977 	1.1.2 1.1.2 2.	3333 3 3	ci c.	· · · · · · · · · · · · · · · · · · ·
i 2 1.65 6.h 6 1.65 6.h 5 1.65 a 2 2.55 b 6 1.87 b 7 2.60 b 2 2.60 b 2 2.61 b 1 1.103 b 1 1.103 b 1 1.03 c 1 1.103 b 1 1.03 b 1 1.03 b 1.03 1.04 c 1 1.03 c 1		ିଲ୍ଲ ୧୦୦୦ ଅନ୍ତ୍ରମାନ ୧୦୦୦ ଅନ୍ତ୍ରମାନ ୧୦୦୦ ଅନ୍ତ୍ରମାନ	11111111111111111111111111111111111111	ତ ହିନ୍ତି ।	c) c.	. ir
Gh G 1.65 d 2 2.55 a 2 2.55 b 1 2 2.55 b 5 1.55 2.90 a 2 2.50 2.90 a 2 2.00 2.00 a 2 2.00 2.00 a 2 2.00 2.00 a 2 2.00 2.00 b 1 1.03 2.00 b 1 1.03 2.00 a 1 1.03 2.00 b 1 1.03 2.00 a 1 1.03 2.00 a 1 1.03 2.00 a 1 1.03 2.00		9 C C B B D	2.5 % % % % % % % % % % % % % % % % % % %	3 Ê Ê	ci c.	۱۲ ۲ د ۲۰۰۰ ۲
a 2 2.55 a 19: 2.50 2.90 b 6 1.45 1.46 a 19: 2.50 2.90 a 2: 2.50 2.41 a 2: 2.50 2.41 a 2: 2.50 2.41 a 2: 2.50 2.41 a 2: 1.10 2.50 a 1 1.05 2.60 a 1 1.05 2.60 a 1 1.05 2.60 a 1 1.05 2.60 a 1 1.05 1.96 a 1 1.05 1.96 a 1 2.60 2.60 a 1 2.50 2.50 a 1.05 1.96 1.96 a 1.56 1.96 1.96 a 1.56 1.96 1.96 a	й о — — — — — — — — — — — — — — — — — —	ल स. १८ ज इ. इ. ए		(e) (c)	ci c.	11 H
N 12: 2::00 2:00 2:00 2:00 N 6 1.85 1.87 3.00 N 7 7:00 5.00 5.00 N 7 7:00 5.00 5.00 N 7 7:00 5.00 5.00 N 7 7 7:00 5.00 N 7 7 7:00 5.00 N 7 2 2.00 7 7:00 N 1 1 1 1 1 1 1 N 1 1 1 1 1 1 1 1 1 N 1 <		ର ର ବ୍ୟାଥ ଥିବ	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3 2 3	cu c.	
 b 6 1.85 1.87 b 6 1.85 1.87 c 2 2.83 2.48 e 2 2.83 2.44 e 2 2.87 2.44 e 2 1.63 2.45 e 1 1.63 1.73 e 1 2.63 1.73 e 1 2.63 1.73 e 1 2.63 1.73 e 1 2.63 1.74 e 1 2.63 1.74 e 1 2.63 1.74 e 1 2.63 1.74 e 1 2.63 1.73 	۵ ۵ ۵ ۵ ۵ ۵ •		17 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 E :	en er	ž,
 c <lic< li=""> c <lic< li=""> <lic< li=""></lic<></lic<></lic<>	,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 E :	ci c.	2
e 2 2.60 5.00 e 2 2.20 2.44 e 2 2.20 2.44 e 2 2.05 2.95 e 2 1.03 2.45 e 1 1.03 2.45 e 1 2.01 1.95 e 1 3.01 1.95 e 1 3.	~~~~ ~~~~	~ ~ ~ = = ~	17 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(a) (a) (a)	~ ~	2
2 2.20 2.44 2 2.46 2.49 2 2.01 2.44 2 2.01 2.44 1 1.03 2.46 1 1.0	~ g *		2.26 2.26 2.26	(i)	с.	-
P P. 2.18 2.53 2 2.16 2.39 2 2.16 2.39 2 1.07 2.16 1 1.18 2.19 1 1.18 2.19 1 1.18 2.19 1 1.13 1.26 1 1.13 2.96 1 1.65 1.12 1 1.65 1.12 1 2.20 2.30 1 1.65 1.12 1 1.65 1.12 1 1.50 1.12 1 1.50 2.30 1 1.50 1.15 1 1.50 1.16 1 1.50 1.56 1 1.50 1.56 1 1.50 1.56 1 1.50 1.56 1 1.50 1.56 1 1.50 1.56	₽ [°]		2.24 2.24			ē J ₹ 5
2 2.16 2.9 2 2.07 2.16 1 1.03 2.16 1 1.03 2.04 1 1.03 2.04 1 1.03 2.04 1 1.03 2.04 1 2.04 1 2.05 2.46 1 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05	₄ <i>~</i>	6 7	2.2h 2.2h	(e)	сч	я
2 2.00 2.01 1 1.03 2.01 1 1.03 2.04 1 1.03 1.36 2.06 1 1.03 1.36 1 2.04 1 2.04 1 2.04 1 2.04 1 2.04 1 1.05 1 1.0 1 2.04 1 2.04	.e	סי ו	2.2%	(h,h)	ĸ.	e
2 1.00 2.01 2 1.10 2.06 4 1.03 1.36 4 1.03 1.36 1 3.30 2.46 1 3.30 2.46 1 3.10 1.94 1 1.30 1.94 1 1.30 1.94 2 2.0 1.94				(c,d)	2	٤
1 1.03 2.00 1 1.03 2.00 1 1.03 2.00 1 2.03 2.00 1 2.03 2.06 1 2.03 2.06 1 2.03 2.06 1 1.03 1.03 1 1.03 2.06 1 1.03 1.03 1 1.03 2.06 1 1.0			T6-T	£	ď	AB J 🚆 IY
 1.65 1.75 7.71 7.72 7.84 7.92 7.95 7.95 7.95 7.95 7.96 7.96 7.96 			0,-T	(i)	-	5 I P P
4 2.91 2.44 4 2.12 2.46 4 2.12 2.46 1.150 1.56 1.56 1.51 3.60 2.161 3.60						
1 2:00 2:00 1 2:12 2:46 2 1.53 1.56 4 1.50 1.58 5 1.56 5	-	AB You	05 0	3	-	or × 1 av
4 2.12 2.46 2 1.83 1.96 4 1.50 1.34 2.1Å 3.00	æ	÷			~	P
2 1.85 1.96 4 1.50 1.59 2.18 2.18	~	Ę	2.33	(c)	÷	3
A 11.50 11.58	ເປ	Ą	1.9h		cu	ч
2 2:10 3.00	-	$J \stackrel{AB}{\simeq} T H_2$		ê	r,	51 [∼] 1 84
	¢.	NA AR	5.05	(;)	0.	21 Z L 84
L a 2 2 72 3.05 2.35	¢1	-	сб-с ,	(a)	а,	ы
1 1 2 2.11 2.39 2.30	~		9, 'd	(a, c)	9	u
2.20 2.55	33					
	_	AR	2.18	(2°6)	£	21
	-	2 - C	41.4	(q)	~	AR J 💭 TP
			06-1		۲	10
		AB				
6016 CITY 1		12T - 12	ىن.			
e -	* *	n a				
0.0 z.o z		. qv				
Тыы ъ ъ 2.0% 2.21 2.10 Вг		RT 2 F	77			

bisulfite in small portions and stirring until the bromine color disappeared and the solution turned light yellow or colorless. The carbon tetrachloride (or chloroform) solution was then washed with water, dried over MgSO4 and evaporated under reduced pressure. The semi-solid which was obtained was sublimed and recrystallized from pentana; 2.4 g (60%) of white crystalline 1-bromodiamentane (III), up 817.5-220°, were obtained. Further recrystallization from hexame gave white crystals, up 222-22-0. See Table IX for further data.

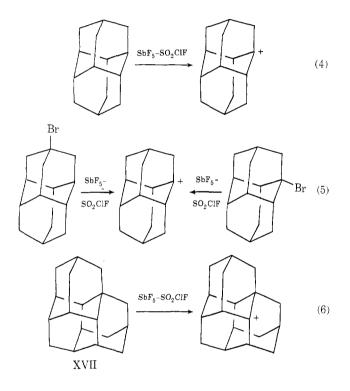
5. With t-Butyl Bronids-Aluminum Bronids at 0°C. Freshly sublined aluminum bromide (0.1 g) was added to a mixture of 2.0 g (0.011 mole) diamant and 2.0 g (0.015 moles) to-buryl broadds in 10 ml of aniydrous syclohexars at 0°. After stirring overnight at the same terperature, the reaction mixture was added to ice and extracted with 3 x 100 mL of hexans. The hexane layers were combined, washed with water and dried over MgSO4. Evaporation of solvent left 3.0 g of semi-solid material which was 98% a mixture of nonobrowodismartanes III and IV. The rest was comprised of dibrorides V, VI and VII. A sample of this material (1.0 g) was hydrolyzed by refluxing in 100 ml of a solution of 10% $K_{\rm g}{\rm GG}_{\rm S},$ 50 ml account, and 0.5 g ${\rm Agr}{\rm G}_{\rm S}.$ Jas chromatographic analysis on a 1.5 r X 3 no 5% DC 710 column, at 1900 indicated a mixture of hydrolysis products to be 21% 1-hydroxy and 59% 4-hydroxy dismentane (retention times 3.5 and 4.25 min respectively). 1- and 4-browodiamantanes III and IV are separable by column chrometography on Woels neutral alumina or silica gel. The first to slute with became was III; IV followed. Recrystallization of TV from bexane yielded write crystals, mp 127-128.20 (11th 127-1290).

Preparation of Dibronides. A. In Nest Browing at Reflux. Disnammane (10.0 g , 0.05% mole) was refluxed in 50 mL of broning overmight. Workup as in A (above) gave 19.0 g of semi-solid crude product which was shown by gas chromatographic analysis on a (5% carbowax 20 K, 3 m x 3 un column at 220°) to be a mixture of III (15%), V (18%), VI (9%), and other non-bround roducts 28%. Pure white crystalline 1,6-dibromodiamantane (V), mp 272-2730, was obtained by recrystallization from chloroform.

B. In Nest Browing With Added Aluminus Browide, Retio of Newsmanner Aluminum Browide (10:1) at 0°C. To 1.0 g (0.0054 mole) dismantance mixed with 0.05 g of alurinum browide was added with ice-cooling 9 ml of browite slowly. After 3 hours, another 0.05 g of aluminum browide was aided and the reaction mixture left at 0° for an additional two hours. The excess browing was decomposed and the reaction worked up in the usual manner. A white solid, 2.0 g was obtained. Gas obtatainerathic staivels (9% DC 710, 5 to x 5 to). 200⁰, He = 1.3 atc), indicated a mixture of VII (465), VI (385), V (65) monobromiće III and IV (-\$) and other unidentified saterials (4\$). A small symmt of personalum ether was added, and the insoluble - -, ? dibronodiamatiano (VII), 0.6 g was collected. The soluble portion was chronatographed on silica gel and eluted with hexame. The order of elution was as follows: nonobroaddes III and IV, followed by Moronides V, VI and VII. Analytically pure white orystalline VI, mp 107.4-109.1°, was obtained by recrystallization of the chromatographed natorial from became. Pure VII, slee White and crystalline, w 32-326°, was obtained by recrystallization from hexane benzene (1:1).

Preparation of 1, 1, 2 unibroaddiananiane (VIII). To a mixture of 10 -1 ine and 60 mg aluminum browide was added in small portions 2.0 g (0.011 nole) disventane. After stirring at reflux for two hours, the usual workup procedure was employed. Evaporation of solvent (CMC1_3) left 3.7 g of solid. addition of a small amount of pertane left 2.5 g (53%) of incoluble retorial characterized as $\lambda_{1} \downarrow_{2} g_{-} \forall right from diamentane (VIII). The soluble fraction$ contained a mixture of mono and dibromodiamantanes which were not separated. The orude, inscluble VIII was chromatographed on 200 g of aluring and sluted first with hexame and then bentwhe. Pure VIII (2.0 g) was obtained by evanorating the benzene fractions. Recrystallization from benzene-abstone (1:1) gave white crystals, $rp = 194-195 \cdot 5^{\circ}$.

Preparation of 1,1,6,9-tetrabronchianantane (2.0 g, 0.011 mole) was added in small portions to 10 ml of browing containing 2.0 g


Preparation and Solvolysis of Diamantyl Bromides

sluctures brontide. An exothermic resolute ensuel. Reflucing was consistent for an additional how after Which the usual workup procedure was followed. The crude solid thus obtained was washed with pentance leaving 2.85 g (4.5) of crude Ly-16,9-exotechronodiamenance (LV). The soluble fractice, a minume of mome dimension that crystals, rg 351-3569 was obtained. IX may also be prepared by adding about 20 mg of 2.9-51569 was obtained. IX may also be prepared by adding about 20 mg of 2.9-410romo-Clarantees (VII) in 1 mi of rollwiding mast browines.

<u>Fri-traduction Detries Retarion of Lytribronodiscretars (FII)</u>. To $S_i > c \in C$ VI élactroi da Si ti of barnero cas adde through a dropping Duran $0, j = c \in C$ VI élactroi da Si ti of barnero cas adde through a dropping Duran $0, j = c \in C$ via the second of the convert left an of by reacher, byce addition of a scall accut of these converts left an of by Hibrarolizantiano (VII) presipitated. The filterste, a defuture of distantate, hibrarolizantano (VII) presipitated. The filterste, a defuture of distantate, hibrarolizantano (VII) presipitated in filterste, a defuture of distantate, hibrarolizantano (VII) by defuture addition of the basene. The first bard observed by ultraviolet light upon clution with basene. The first bard contained distantance and spin-chulytic broutle, the second was excreted with howeve ad gave (S) up of (V) and the twict dynation contained VII. Solvairis Restlins, A. Minerio Messagements. Tate measurements were performed in 55% express eshaped (by volume). The ethale. Was purified by standard procedures. Conductivencin other were followed using either a recording conductivity bridge on a Wayne-Kerr McVwesal Conductance bridge 2-641. In each case, its eargite was made about 10⁻⁰⁵ M in a conductance onlithoring outpict pictures electroses and a copacity of about 20 ml. Fitnissetio rates were determined using a Bedrama submatic tituters. At least two runs per serie were eads, and good (cristorier rate good were obtained in all cases)

3. Product divides from Bourdivis of LiG-dibromAdmentums (1). Ribrands v (2.0 g) was partially identified in 125 ml of 60% squares seatone and heterd in a sealed topoile at 100,01° for NG.3 futures (one half life at 102.60° is 81.5 minutes). The resolution was generated and clined with value and extended this Dibrations and where. One threat-operating easilysts of the graduat actuary on a glass column (5% E0720, 5 m x 6 mm) did not indicate hulid up of intermediate logicnex-Gherendistantines. Authentic LiG-dibrate compound was prepared by solvelyies to 90% resolution and and resonation time of 1 min. Unrested dibratic and restories that of 50 min. The intermediate, if present, would be expected to show a peak between Li And 30 minutes.

 Product Studies from Solvelysis of L4-Dibromodiatarians (T1). As above, 8.0 g of VI was partially dissolved in 185 ml of 60% squeous account

Solvolysis of Dibromides. Rate-Determining Step. Solvolyses of compounds containing two leaving groups can well be expected to be complicated. Nevertheless, all of the diamantane dibromides solvolyzed exhibited apparent first-order behavior over at least 2.5 half-lives. Product analyses after partial solvolysis (0.5 half-life) of V and VI did not reveal significant build-up of intermediates; very small glc peaks (<1%) believed to be due to hydroxybromodiamantanes were observed, but isolation attempts failed.

A large build-up of hydroxyl bromide intermediate is not to be expected during solvolysis of the symmetrical dibromides V and VII. Replacing one bromine $(\sigma^*_{CH_2Br} =$ $1.0)^{40-42}$ by a less electron-withdrawing hydroxyl group $(\sigma^*_{CH_2OH} = 0.555)^{40-42}$ should result in a hydroxy bromide more reactive than the original dibromide, despite the statistical advantage of the latter. Analysis of such sequential processes⁴³ show that if loss of the first bromine (k_1) is ten times slower than loss of the second (k_2) , then the maximum build-up of intermediate should only be 8%. The kinetics are complex, but the observed rate approximates k_1 . If $k_2 > 10k_1$, then the concentration of intermediate would be undetectable by the methods employed.

To assess the rate enhancement to be expected from replacement of one bromine by a hydroxy substituent, we applied a rough two-point (H and Br) Taft-Hammett treatment⁴⁴ to experimental data of VII, V, and X, and interpoJ. Org. Chem., Vol. 39, No. 20, 1974 3001

and beated at 102.5⁰ (solution was complete at this temperature) for 10.-5 min (one half life at 100.82⁰ (solition), Following the same workup procedures as above, give easilytic on a 1% outpower 3 m x 3 m column did not reveal any significant build up of intermediate. Automnto 1,4-44/hydroxyfor product identification. Unrearted by activities is 9% resultor, for product identification. Unrearted by activities is 9% resultor, for product identification. Unrearted by -activities had retartion time 19.9 min. The intermediate (intyGroup-intermediatentee) would be opposited to invo a retartion time between the four Avery small peak (< 16 of retention time 10 mal/bac observed, but out functioned.

<u>Ripconcernshipson salutations</u>. The method used has been described in general.⁴⁰ Both sets of calculations used point charge rodels for the embidic converse and the leaving groups Were ignored. In the first son, a finantnee structure with restructeday languages for bond lengths of 1.335 Å and normal alignatic O-E and D-Br bond lengths were setting. The source standards a finitesed carboardion sites interactive were produced accordingly Schwahard bond or group resents were employed.⁵⁰

(50) C.P. Smyth, "Dielectric Behavior and Structure," KoOrew-Hill Book Co., Inc., New York, C.Y., 1955 p. 701.

Table VII

Relative Rates of Hydroxy Bromo Compounds Extrapolated from Graph of Log $k_{\rm R}/k_{\rm H} vs$. Taft $\sigma^*_{\rm CH_2}$ Constants

Positions of substitution	Dibromide	Bromo alcohol	Temp, °C	Ref
4,9-Diamantane (VII)	1	5.6	70	а
1,6-Diamantane (V)	1	17.4	70	a
1,3-Adamantane (\mathbf{X})	1	28.6	70	a
, , , , , , , , , , , , , , , , , , , ,	1	36	75	b
	1	51	100	с

^a This work; two points used, H and Br; OH derived from graphical interpolation. ^b Extrapolated from data of P. v. R. Schleyer and C. W. Woodworth, J. Amer. Chem. Soc., **90**, 6528 (1968); $\rho^*_{CH_2} = -2.70$ from plot of log $k_{\rm R}/k_{\rm H}$ vs. $\sigma^*_{CH_2}$. ^c Data were taken from ref 45.

lated a relative rate for the hydroxy bromo intermediate (Table VII). For a check, we also supplied a Taft-Hammett treatment to published data of some 1,3-disubstituted adamantanes^{37,45} and interpolated a relative rate for the hydroxy substituent (Table VII); satisfactory agreement was obtained.

The hydroxy substituent retards the rate less than bromine. The roughly estimated 5.6 rate acceleration for 9-OH relative to 9-Br and VII indicates that ~14% maximum build-up of intermediate should have occurred and the measured rate constant should be complicated by contributions from k_2 . In V, the calculated rate acceleration for OH is >10 (17.4) and therefore build-up of intermediate is expected to be negligible and k_1 should be the rate-determining step. Solvolysis of VI is the most complicated, since the bromines are at two different types of bridgeheads, which differ 24-fold in reactivity. The medial bromine should solvolyze first, to yield a 1-hydroxy-4-bromodiamantane. A two-point Taft-Hammett treatment here is not possible. and is difficult to assess the exact acceleration for an OH. Although VI is like V in that the two polar substituents are separated by four carbons, the orientations are different. We did not experimentally observe an intermediate from VI, suggesting that the first step (k_1) is rate determining.

Application to Polar Effects Models. Marked rate decelerations with respect to the monobromides were observed for all four dibromides with the effect generally falling off with the distance between the substituents (Table VIII). The decrease is caused by the diminishing electronwithdrawing polar effect of the second bromine.

Two propagation mechanisms for the polar effect are believed to operate. *Through-bond induction* is dependent on the number and orientations of paths between the substituent and reaction site.^{25,46} Alternatively, in the *through-space field effect model*,⁴⁶ the polar effect is

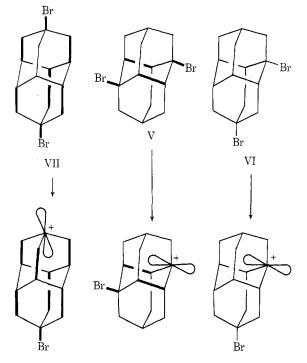
Table VIII	
------------	--

Calculated and Experimental Solvolysis Rates of Diamantane Dibromides Relative to

	Diamantane Monobromides in 80% Ethanol (by Volume) at 70°	
· · · · · · · · · · · · · · · · · ·		
	Calcd rate	

Compd	Calcd ^a (normal model)	Caled ^b (flattened model)	Calcd rate deceleration range— normal and flattened models	Obsd
IV	1.0	1.0	1.0	1.0
\mathbf{VII}	$2.85 imes10^{-1}$	$7.46 imes10^{-2}$	1/4-13	$2.0 imes10^{-2}$ c $(1/50)$
\mathbf{VI}		$1.66 imes10^{-2}$ d	1/60	
III	1.0	1.0	1.0	1.0
V	$7.23 imes10^{-2}$	$2.26 imes10^{-3}$	1/14-442	$1.6 imes 10^{-3}$ c $(1/625)$
VI	$1.03 imes10^{-2}$ f	$1.76 imes10^{-8}$ f	1/98-562	$5.2 imes 10^{-3}$ (1/193)

^a Kirkwood-Westheimer model with tetrahedral carbons. ^b Kirkwood-Westheimer model with distance between center of cavity and reaction site decreased by flattening to the extent of an adamantane bridgehead carbocation. ^c Statistically corrected by dividing original value by 2. ^d For solvolysis of apical bromine ^c Statistically uncorrected. ^f For solvolysis of medial bromine.


transmitted according to the classical laws of electrostatics, the magnitude being dependent on distance, the angular relationship between the reaction site and substituent, and the nature of the medium between and around them. Most studies of propagation mechanisms have dealt with substituent effects on pK_a's, *e.g.*, of carboxylic acids in rigid systems.⁴⁶ Carbonium ion processes would appear to provide even better tests, since charge is created directly upon the molecular framework.^{46b}

The rigid diamantyl bromides are ideally constituted for investigation of the two polar mechanisms. Calculations based on the Tanford modification⁴⁷ of the Kirkwood-Westheimer elipsoidal cavity model⁴⁸ were employed to evaluate the contribution of the field effect to the dibromide rate depressions (Table VIII).49 Two sets of calculations were performed, both employing the point-charge approximation for the carbocation (the leaving group was ignored). The first set used ground-state geometries but in the second the distance between the reaction site and center of the diamantane molecule was shortened to simulate the flattening expected in such bridgehead cation systems. The calculations predict rate decelerations of 4 (groundstate geometry) to 13 (flattened model) for VII compared to IV, 14-442 for V compared to III, and 98-562 for VI compared to III. These calculations suggest that the rate depressions due to a field effect should be small for VII, and comparable for V and VI. Solvolysis of VI exhibits a 193-fold rate depression relative to III, a magnitude bracketed by the two field model calculations. This is to be expected, since the unsymmetrical dibromide VI does not possess the favorable parallel alignment of bonds and orbitals necessary for optimum operations of the throughbond effect²⁵ (Chart III).

In contrast, the observed 50-fold rate depression for VII is appreciably larger than that calculated even with the flattened model. We attribute the discrepancy (3–13) to the operation of the through-bond inductive effect.⁴⁶ Although the interaction appears to be remarkably large for such a long distance, multiple pathways are available which possess the favorable parallel alignment of the "vacant" cation orbital with the C–C bonds (darkened in Chart III) and the bromine substituent.²⁵ The inductive model also seems able to account for the 625-fold rate depression of V compared to III which exceeds by 1.4–45 times that calculated by the field effect model. V also possesses a favorable alignment of the "vacant" carbocation orbital with the C–C and C–Br bonds (Chart III).

In summary, it appears that transmission of substituent effects in these diamantyl dibromides may occur by both the through-bond and through-space mechanisms. This is evident in the solvolysis of dibromides V and VII, both of

Chart III

which display rate depressions much greater than that calculated for a direct through-space interaction. The necessary criterion for a strong σ -inductive interaction appears to be a parallel arrangement of orbitals. Effects of other substituents are currently being studied and will be reported later.

Acknowledgments. This research was supported by grants from the National Institutes of Health (GM-19134), the National Science Foundation, and the donors of the Petroleum Research Fund, administered by the American Chemical Society. We thank C. Hoogzand, who made the first observation that dibromides are formed during bromination of diamantane. V. Z. Williams and R. Fort contributed to early studies of 1-diamantyl bromide. The 220-MHz spectra were obtained through the courtesy of Professor E. Wenkert and E. Hagaman.

Registry No.—I, 2292-79-7; VIII, 32401-13-1; IX, 32401-14-2.

Miniprint Material Available. Full-sized photocopies of the miniprinted material from this paper only or microfiche (105×148 mm, $24 \times$ reduction, negatives) containing all of the miniprinted and supplementary material for the papers in this issue may be

Bufadienolides. 28

obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for \$3.00 for photocopy or \$2.00 for microfiche, referring to code number JOC-74-2995.

References and Notes

- For papers pertinent to this series see ref 3, 4, 5a, 6, 7, and 8 and (a) T. M. Gund and P. v. R. Schleyer, *Tetrahedron Lett.*, 1959 (1973); (b) T. M. Gund, P. v. R. Schleyer, P. H. Gund, and W. T. Wipke, *J. Amer. Chem.* Soc., in press. (2) (a) Ph.D. Thesis, Princeton University, 1973; (b) Princeton University; (c)
- Oregon State University. C. Cupas, P. v. R. Schleyer, and D. J. Trecker, *J. Amer. Chem. Soc.*,
- (3)
- 87, 917 (1965). T. M. Gund, V. Z. Williams, Jr., E. Osawa, and P. v. R. Schleyer, *Tetra-hedron Lett.*, 3877 (1970). (4)
- (a) For a full account of the preparative stages see T. M. Gund, E. Osawa, V. Z. Williams, Jr., and P. v. R. Schleyer, *J. Org. Chem.*, **39**, 2979 (1974); (b) T. M. Gund, W. Thielecke, and P. v. R. Schleyer, *Org.* Syn., 53, 30 (1973); (c) T. Courtney, D. E. Johnston, M. A. McKervey, and J. J. Rooney, *J. Chem. Soc.*, *Perkin Trans.* 1, 2691 (1972).
 T. M. Gund, P. v. R. Schleyer, and C. Hoogzand, *Tetrahedron Lett.*,
- 1583 (1971).
- T. M. Gund, M. Nomura, V. Z. Williams, Jr., P. v. R. Schleyer, and G. (7)Hoogzand, *Tetrahedron Lett.*, 4875 (1970). I. Tabushi, Y. Aoyama, N. Takahashi, T. M. Gund, and P. v. R. Schleyer,
- (8)
- (9) D. Faulkner, R. A. Glendinning, D. E. Johnston, and M. A. McKervey, *Tetrahedron Lett.*, 1671 (1971).
- (10) T. M. Gund, M. Nomura, and P. v. R. Schleyer, J. Org. Chem., 39, 2987 (1974).
- (a) M. A. McKervey, D. E. Johnston, and J. J. Rooney, Tetrahedron Lett., (11)(11) (a) M. A. McKervey, D. E. Johnston, and J. J. Hooney, *Tetrahedron Lett.*, 1547 (1972); (b) C. R. Hamilton, D. E. Johnston, M. A. McKervey, and J. J. Rooney, *J. Chem. Soc., Chem. Commun.*, 1209 (1972); (c) D. E. Johnston, M. A. McKervey, and J. J. Rooney, *ibid.*, 29 (1972).
 (12) S. Landa, S. Kriebel, and E. Knobloch, *Chem. Listy*, **48**, 61 (1954); S. Landa and S. Hála, *Collect. Czech. Chem. Commun.*, **24**, 93 (1959).
 (13) H. Stetter, M. Schwarz, and A. Hirschhorn, *Chem. Ber.* **92**, 1629 (1959); H. Stetter and C. Wulff, *ibid.*, **93**, 1366 (1960).

- H. Stetter, J. Mayer, M. Schwarz, and K. Wullf, *Chem. Ber.*, **93**, 226 (1960); H. Koch and W. Haaf, *Angew. Chem.*, **72**, 628 (1960); W. Haaf, (14)ibid., 73, 144 (1961).
- Ibid., 73, 144 (1961).
 Reviews: (a) R. C. Fort, Jr., and P. v. R. Schleyer, Chem. Rev., 64, 277 (1964); (b) R. C. Bingham and P. v. R. Schleyer, Fortschr. Chem. Forsch., 18, 1 (1971); (c) V. V. Sevost'yanova, M. M. Krayushkin, and A. G. Yurchenko, Russ. Chem. Rev., 39, 817 (1970); (d) Z. Weidenhoffer and S. Hála, Sb. Vys. Sk. Chem.-Technol. Praze, Technol. Paliv, 22, 5 (1971); (e) E. Engler and P. v. R. Schleyer, MTP (Med. Tech. Publ. Co.) Int. Rev. Sci.: Org. Chem., Ser. One. 1973, 239 (1973).
 (16) (a) C. L. Pourberg, J. Cara Chem. 20, 032 (1964); (b) E. D. Talaty, A. E.
- (16) (a) G. L. Baugham, J. Org. Chem., 29, 238 (1964); (b) E. R. Talaty, A. E. Cancienne, Jr., and A. E. Dupuy, Jr., J. Chem. Soc. C, 1902 (1968); (c) T. M. Gorrie and P. v. R. Schleyer, Org. Prep. Proced. Int., 3, 159 (1971)

- (1971).
 H. Stetter, M. Schwarz, and A. Hirschhorn, Angew. Chem., 71, 429 (1959); H. Stetter and C. Wulff, *ibid.*, 72, 351 (1960).
 A. R. Gagneux and R. Meier, *Tetrahedron Lett.*, 1365 (1969).
 H. Stetter, J. Gärtner, and P. Tacke, Chem. Ber., 98, 3888 (1965); H. Stetter and J. Garnter, *ibid.*, 99, 925 (1966).
 T. Mori, K. Kimoto, M. Kawanisi, and H. Nozaki, *Tetrahedron Lett.*, 3653 (1969); T. Mori, K. H. Yang, K. Kimoto, and H. Nozaki, *ibid.*, 2419 (1970). 1970)
- (1970).
 (21) "Medial" (proposed by C. Jefford) replaces the original "belt" ^{6,15b,e} and seems preferable as a general designation to "zonal".^{5c}
 (22) G. A. Olah and J. Lucas, *J. Amer. Chem. Soc.*, **90**, 933 (1968).
 (23) F. R. Jensen, C. H. Bushweller, and B. H. Beck, *J. Amer. Chem. Soc.*, **24**, 440400.
- 91, 344 (1969).

- (24) Cf. P. v. R. Schleyer, K. R. Blanchard, and C. D. Woody, J. Amer. Chem. Soc., 85, 1358 (1963).
 (25) R. Hoffmann, Accounts Chem. Res., 4, 1 (1971).

- (26) R. C. Fort, Jr., and P. v. R. Schleyer, J. Org. Chem., 30, 789 (1965).
 (27) (a) F. W. V. Deursen and R. K. Korver, Tetrahedron Lett., 3923 (1967);
 (b) F. W. V. Deursen and A. C. Udding, Recl. Trav. Chim. Pays-Bas, 87, 1243 (1968); (c) F. W. V. Deursen and J. Bakker, Tetrahedron, 27, 4593 (1971).
- 4593 (1971).
 (28) For reviews with emphasis on recent work at Princeton, see (a) D. J. Raber and J. M. Harris, J. Chem. Educ., 49, 60 (1972); (b) P. v. R. Schleyer in J. E. Dubois, Ed., "Reaction Transition States," Gordon and Breach, New York, N. Y., 1972; also (c) D. J. Raber, R. C. Bingham, J. M. Harris, J. L. Fry, and P. v. R. Schleyer, J. Amer. Chem. Soc., 92, 5977 (1970); (d) D. N. Kevill, K. C. Kolwyck, and F. L. Weitl, *ibid.*, 92, 7300 (1970); (e) D. J. Raber, J. M. Harris, R. E. Hall, and P. v. R. Schleyer, *ibid.*, 93, 4821 (1971); (f) D. N. Kevill, K. C. Kolwyck, D. M. Schleyer, *ibid.*, 93, 4821 (1971); (f) D. N. Kevill, K. C. Kolwyck, D. M. Schleyer, *ibid.*, 93, 4821 (1971); (f) D. N. Kevill, K. C. Kolwyck, D. M. Schleyer, 11, 89 (1974).
 (29) S. Winstein and N. J. Hollness, J. Amer. Chem. Soc., 77, 5562 (1955).
 (30) Review: J. E. Williams, Jr., P. J. Stang, and P. v. R. Schleyer, Annu. Rev. Phys. Chem., 19, 531 (1968).
 (31) K. B. Wiberg, J. Amer. Chem. Soc., 87, 1070 (1965); H. A. Harris, Ph.D.

- Phys. Chem., 19, 531 (1968).
 (31) K. B. Wiberg, J. Amer. Chem. Soc., 87, 1070 (1965); H. A. Harris, Ph.D. Thesis, Yale University, 1966.
 (32) N. L. Allinger, M. A. Miller, F. A. Van Catledge, and J. A. Hirsh, J. Amer. Chem. Soc., 89, 4345 (1967); N. L. Allinger, J. A. Hirsh, M. A. Miller, I. J. Tyminski, and F. A. Van Catledge, *ibid.*, 90, 1199 (1968); N. L. Allinger, M. T. Tribble, M. A. Miller, and D. H. Wertz, *ibid.*, 93, 1637 (1971).
 (33) R. C. Bingham, Ph.D. Thesis, Princeton University, 1971.
 (34) G. J. Gleicher and P. v. R. Schleyer, J. Amer. Chem. Soc., 89, 582 (1967).
- (1967). (35) R. C. Bingham and P. v. R. Schleyer, J. Amer. Chem. Soc., 93, 3189
- (35) R. C. Bingham and P. v. R. Schleyer, J. Amer. Chem. Soc., 93, 3189 (1971).
 (36) R. C. Bingham, W. F. Sliwinski, and P. v. R. Schleyer, J. Amer. Chem. Soc., 92, 3471 (1970); S. A. Sherrod, R. G. Bergman, G. J. Gleicher, and D. Morris, *ibid.*, 92, 3469 (1970); P. v. R. Schleyer, P. R. Isele, and R. C. Bingham, J. Org. Chem., 33, 1239 (1968); W. G. Dauben and C. D. Poulter, *ibid.*, 33, 1237 (1968); R. C. Bingham and P. v. R. Schleyer, *Tetrahedron Lett.*, 23 (1971); A. Karim, M. A. McKervey, E. M. Engler, and P. v. R. Schleyer, *ibid.*, 398, 1657 (1971); V. R. Koch and G. J. Gleicher, *J. Amer Chem. Soc.* 93, 1657 (1971).
- (37) A. Streitwieser, "Solvolytic Displacement Reactions," McGraw-Hill, New York, N. Y., 1962, pp 125–126.
 (38) G. Mateescu, Ph.D. Thesis, Case Western Reserve University, 1972.

- (38) G. Mateescu, Ph.D. Thesis, Case Western Reserve University, 1972.
 (39) G. A. Olah, unpublished results, privately communicated.
 (40) R. D. Gilliom, "Introduction to Physical Organic Chemistry," Addison-Wesley, Reading, Mass., 1970, p 160.
 (41) R. W. Taft, Jr., in "Steric Effects in Organic Chemistry," M. S. Newman, Ed., Wiley, New York, N. Y., 1956, Chapter 13, p 595.
 (42) V. A. Palm, *Russ. Chem. Rev.*, **30**, 471 (1961).
 (43) K. B. Wiberg, "Physical Organic Chemistry," Wiley, New York, N. Y., 1964, p 203.

- (43) K. B. Wiberg, "Physical Organic Chemistry," Wiley, New York, N. Y., 1964, p 323.
 (44) R. W. Tatt, Jr., J. Amer. Chem. Soc., 74, 2729, 3120 (1952).
 (45) M. M. Krayushkin, V. V. Serost'yanova, and G. I. Danilenko, Bull. Acad. Sci. USSR, Div. Chem. Sci., 2678 (1969).
 (46) (a) L. M. Stock, J. Chem. Educ., 49, 400 (1972), and references cited therein; (b) C. L. Liotta, F. W. Fisher, G. H. Greene, Jr., and B. L. Joyner, J. Amer. Chem. Soc., 94, 4891 (1972); (c) C. L. Liotta, W. F. Fisher, E. L. Slightom, and C. L. Harris, *ibid.*, 94, 2129 (1972); (d) S. Ehrenson, Progr. Phys. Org. Chem., 2, 195 (1964); (e) F. W. Baker, R. C. Parish, and L. M. Stock, J. Amer. Chem. Soc., 79, 5677 (1967); (f) G. F. Wilcox and C. Leung, *ibid.*, 90, 336 (1968); (g) J. D. Roberts and W. T. Moreland, *ibid.*, 75, 2167 (1953); (h) Table VII, footnote b.
 (47) C. Tanford, J. Amer. Chem. Soc., 79, 5348 (1957).
 (48) J. G. Kirkwood and F. H. Westheimer, J. Chem. Phys., 6, 506 (1938); F. H. Westheimer and J. G. Kirkwood, *ibid.*, 6, 513 (1938).
 (49) For a general description of the calculation method, see P. H. Owens, G.

- For a general description of the calculation method, see P. H. Owens, G. J. Gleicher, and L. M. Smith, Jr., *J. Armer. Chem. Soc.*, **90**, 4122 (1968); L. Harvey, G. J. Gleicher, and W. D. Totherow, *Tetrahedron*, **25**, 5019 (49) (1969).

Bufadienolides. 28. Marinobufotoxin¹

George R. Pettit* and Yoshiaki Kamano

Cancer Research Laboratory and Department of Chemistry, Arizona State University, Tempe, Arizona 85281

Received March 6, 1974

Syntheses of marinobufagin (5b) and marinobufotoxin (5e) have been achieved. The principal synthetic transformations involved selective dehydration of telocinobufagin (2) and addition of hypohalous acid to the resulting olefin $(2 \rightarrow 3 \rightarrow 4)$ followed by dehydrohalogenation to yield marinobufagin (5b). Application of a carefully development of the second oped mixed carbonic anhydride reaction to the condensation of marinobufagin suberate (5c) with arginine monohydrochloride provided marinobufotoxin (5e).

Almost 50 years elapsed between isolation² of marinobufagin (5b) from the American toad, Bufo marinus, and assignment³ of structure **5b**. Nearly 40 years passed before the structure of marinobufotoxin $(5e)^4$ was firmly estab-